17 research outputs found

    Intention prediction for interactive navigation in distributed robotic systems

    Get PDF
    Modern applications of mobile robots require them to have the ability to safely and effectively navigate in human environments. New challenges arise when these robots must plan their motion in a human-aware fashion. Current methods addressing this problem have focused mainly on the activity forecasting aspect, aiming at improving predictions without considering the active nature of the interaction, i.e. the robot’s effect on the environment and consequent issues such as reciprocity. Furthermore, many methods rely on computationally expensive offline training of predictive models that may not be well suited to rapidly evolving dynamic environments. This thesis presents a novel approach for enabling autonomous robots to navigate socially in environments with humans. Following formulations of the inverse planning problem, agents reason about the intentions of other agents and make predictions about their future interactive motion. A technique is proposed to implement counterfactual reasoning over a parametrised set of light-weight reciprocal motion models, thus making it more tractable to maintain beliefs over the future trajectories of other agents towards plausible goals. The speed of inference and the effectiveness of the algorithms is demonstrated via physical robot experiments, where computationally constrained robots navigate amongst humans in a distributed multi-sensor setup, able to infer other agents’ intentions as fast as 100ms after the first observation. While intention inference is a key aspect of successful human-robot interaction, executing any task requires planning that takes into account the predicted goals and trajectories of other agents, e.g., pedestrians. It is well known that robots demonstrate unwanted behaviours, such as freezing or becoming sluggishly responsive, when placed in dynamic and cluttered environments, due to the way in which safety margins according to simple heuristics end up covering the entire feasible space of motion. The presented approach makes more refined predictions about future movement, which enables robots to find collision-free paths quickly and efficiently. This thesis describes a novel technique for generating "interactive costmaps", a representation of the planner’s costs and rewards across time and space, providing an autonomous robot with the information required to navigate socially given the estimate of other agents’ intentions. This multi-layered costmap deters the robot from obstructing while encouraging social navigation respectful of other agents’ activity. Results show that this approach minimises collisions and near-collisions, minimises travel times for agents, and importantly offers the same computational cost as the most common costmap alternatives for navigation. A key part of the practical deployment of such technologies is their ease of implementation and configuration. Since every use case and environment is different and distinct, the presented methods use online adaptation to learn parameters of the navigating agents during runtime. Furthermore, this thesis includes a novel technique for allocating tasks in distributed robotics systems, where a tool is provided to maximise the performance on any distributed setup by automatic parameter tuning. All of these methods are implemented in ROS and distributed as open-source. The ultimate aim is to provide an accessible and efficient framework that may be seamlessly deployed on modern robots, enabling widespread use of intention prediction for interactive navigation in distributed robotic systems

    El carácter fortificado de la ‘Catedral Vieja’ de Salamanca: visión y revisión de su fábrica medieval.

    Get PDF
    Sobre el denominado como Teso de las Catedrales se erige la ‘Catedral Vieja’ de Salamanca. Diversos elementos arquitectónicos y de ubicación llevan a pensar en la proyección de este edificio con una finalidad castrense. Partiendo de esta base, el presente artículo pretende realizar un estudio de la fábrica catedralicia salmantina, desde un punto de vista histórico, documental y arquitectónico, con el fin de determinar la posible proyección, materialización y finalidad castrense del templo catedralicio como baluarte en la ciudad salmantina

    Counterfactual Reasoning about Intent for Interactive Navigation in Dynamic Environments

    Get PDF
    Many modern robotics applications require robots to function autonomously in dynamic environments including other decision making agents, such as people or other robots. This calls for fast and scalable interactive motion planning. This requires models that take into consideration the other agent's intended actions in one's own planning. We present a real-time motion planning framework that brings together a few key components including intention inference by reasoning counterfactually about potential motion of the other agents as they work towards different goals. By using a light-weight motion model, we achieve efficient iterative planning for fluid motion when avoiding pedestrians, in parallel with goal inference for longer range movement prediction. This inference framework is coupled with a novel distributed visual tracking method that provides reliable and robust models for the current belief-state of the monitored environment. This combined approach represents a computationally efficient alternative to previously studied policy learning methods that often require significant offline training or calibration and do not yet scale to densely populated environments. We validate this framework with experiments involving multi-robot and human-robot navigation. We further validate the tracker component separately on much larger scale unconstrained pedestrian data sets

    Predicting future agent motions for dynamic environments

    Get PDF
    Understanding activities of people in a monitored environment is a topic of active research, motivated by applications requiring context-awareness. Inferring future agent motion is useful not only for improving tracking accuracy, but also for planning in an interactive motion task. Despite rapid advances in the area of activity forecasting, many state-of-the-art methods are still cumbersome for use in realistic robots. This is due to the requirement of having good semantic scene and map labelling, as well as assumptions made regarding possible goals and types of motion. Many emerging applications require robots with modest sensory and computational ability to robustly perform such activity forecasting in high density and dynamic environments. We address this by combining a novel multi-camera tracking method, efficient multi-resolution representations of state and a standard Inverse Reinforcement Learning (IRL) technique, to demonstrate performance that is better than the state-of-the-art in the literature. In this framework, the IRL method uses agent trajectories from a distributed tracker and estimates a reward function within a Markov Decision Process (MDP) model. This reward function can then be used to estimate the agent's motion in future novel task instances. We present empirical experiments using data gathered in our own lab and external corpora (VIRAT), based on which we find that our algorithm is not only efficiently implementable on a resource constrained platform but is also competitive in terms of accuracy with state-of-the-art alternatives (e.g., up to 20% better than the results reported in [1]

    Automatic configuration of ROS applications for near-optimal performance

    Get PDF
    The performance of a ROS application is a function of the individual performance of its constituent nodes. Since ROS nodes are typically configurable (parameterised), the specific parameter values adopted will determine the level of performance generated. In addition, ROS applications may be distributed across multiple computation devices, thus providing different options for node allocation. We address two configuration problems that the typical ROS user is confronted with: i) Determining parameter values and node allocations for maximising performance; ii) Determining node allocations for minimising hardware resources that can guarantee the desired performance. We formalise these problems with a mathematical model, a constrained form of a multiple-choice multiple knapsack problem. We propose a greedy algorithm for optimising each problem, using linear regression for predicting the performance of an individual ROS node over a continuum set of parameter combinations. We evaluate the algorithms through simulation and we validate them in a real ROS scenario, showing that the expected performance levels only deviate from the real measurements by an average of 2.5%

    Task Variant Allocation in Distributed Robotics

    Get PDF
    This paper tackles the problem of allocating tasks to a distributed heterogeneous robotic system, where tasks---named *task variants* in the paper---can vary in terms of trade-off between resource requirements and quality of service provided. Three different methods (constraint programming, greedy, and metaheuristic) are proposed to solve such a problem and are evaluated both in simulation and in a real scenario, showing the goodness of the constraint programming method
    corecore